The file RMAN99_RECOMPUTED contains the periodic terms of the recomputation of the rigid Mars nutation series of RMAN99 (Roosbeek 1999). Computational procedure explained in (Baland et al. 2020) %------------------------------------------------------------------------------------------------------------------------- Truncation criterion: prograde and/or retrograde amplitude larger than 0.025 mas. Solution computed with HD=0.00535464. The solution can be rescaled to any value of HD. %------------------------------------------------------------------------------------------------------------------------- Columns signification: - j is the item number. - Ma, Ju, Sa, Te, Ve are the mean longitudes of Mars, Jupiter, Saturn, the Earth and of Venus. - NPh and NDe are the mean longitudes of the nodes of Phobos and Deimos, respectively. - Periods are given in Earth solar days. - psiC and psiS (mas) are the cosine and sine amplitudes of the nutation in longitude of the angular momentum axis. - epsC and epsS (mas) are the cosine and sine amplitudes of the nutation in obliquity of the angular momentum axis. - P and R (mas) are the prograde and retrograde amplitudes of the nutation of the angular momentum axis. - pi and rho (deg) are the phases to be added to the phase of the prograde and retrograde terms, respectively. - alphaC and alphaS (mas) are the cosine and sine amplitudes of the nutation in right ascension of the angular momentum axis. - deltaC and deltaS (mas) are the cosine and sine amplitudes of the nutation in declination of the angular momentum axis. %------------------------------------------------------------------------------------------------------------------------- The rotation axis can be assimilated to the angular momentum axis. The figure axis CANNOT be assimilated to the angular momentum axis. %------------------------------------------------------------------------------------------------------------------------- The values of the arguments are (Bretagnon and Francou 1988 : VSOP87) (Chapront-Touzé 1990 : ESAPHO and ESADE): Sa = 0.87401675650 + 213.2990954380 T Ju = 0.59954649739 + 529.6909650946 T Ma = 6.20347611291 + 3340.6124266998 T Te = 1.75347045953 + 6283.0758499914 T Ve = 3.17614669689 + 10213.2855462110 T NPh= 2.19694890391 - 2779.5760599403 T NDe= 0.19542626168 - 114.7548090403 T where T is the dynamical time measured in thousand of years since J2000.0 %------------------------------------------------------------------------------------------------------------------------- The waves in the time domain are obtained the following way: Delta psi = psiC Cos(varphi) + psiS Sin(varphi) Delta eps = epsC Cos(varphi) + epsS Sin(varphi) Delta alpha = alphaC Cos(varphi) + alphaS Sin(varphi) Delta delta = deltaC Cos(varphi) + deltaS Sin(varphi) with varphi = f t + varphi0, a linear combination of the arguments Sa, Ju, Ma, Te, Ve, NPh, and NDe. f is positive. delta x = P Cos(f t + pi) + R Cos (-f t - rho) delta y = P Sin(f t + pi) + R Sin (-f t - rho) Times series can be found in the file rman99_recomputed_TimesSeries.dat %------------------------------------------------------------------------------------------------------------------------- The J2000 epoch values are (in degrees) psi0 = 35.496817571 eps0 = 25.192028020 alpha0 = 317.681 delta0 = 52.886 %------------------------------------------------------------------------------------------------------------------------- The secular variations rates the solution are -7578.132 mas/year in longitude for the Solar torque -0.232 mas/year in longitude for Phobos torque -0.251 mas/year in longitude for Deimos torque -0.002 mas/year in obliquity for the Solar torque 0.000 mas/year in obliquity for Phobos torque 0.000 mas/year in obliquity for Deimos torque -3894.186 mas/year in right ascension for all torques -2210.160 mas/year in declination for all torques %------------------------------------------------------------------------------------------------------------------------- Any comments or request could be send to Baland Rose-Marie at the following e-mail address: Rose-Marie.Baland@oma.be Last revision: 09/01/20.